2023-04-17 10:42:41来源:七考网
(资料图片仅供参考)
高中数学三角函数是比较难的一个模块,那同学们总结过高中数学的三角函数吗?下面是由七考网小编为大家整理的“高中数学三角函数公式大全”,仅供参考,欢迎大家阅读。
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
02
倍角公式
tan2A = 2tanA/(1-tan^2 A)
Sin2A=2SinA?CosA
Cos2A = Cos^2 A--Sin^2 A
=2Cos^2 A—1
=1—2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)^3;
cos3A = 4(cosA)^3 -3cosA
tan3a = tan a ? tan(π/3+a)? tan(π/3-a)
半角公式
sin(A/2) = √{(1--cosA)/2}
cos(A/2) = √{(1+cosA)/2}
tan(A/2) = √{(1--cosA)/(1+cosA)}
cot(A/2) = √{(1+cosA)/(1-cosA)}
tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)
03
和差化积
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
积化和差
sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]
诱导公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tgA=tanA = sinA/cosA
万能公式
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
04
其他非重点三角函数
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
双曲函数
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tg h(a) = sin h(a)/cos h(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
05
三角函数口诀
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割。
中心记上数字1,连结顶点三角形。向下三角平方和,倒数关系是对角。
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小。
变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变。
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用。
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范。
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围。
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。
等差数列通项公式
an=a1+(n-1)d
等差数列前n项和公式
Sn=n×a1+n(n-1)d/2
或
Sn=n(a1+an)/2
等差数列其他公式定理
①a(n-k)+a(n+k)=2an
(如同a3 + a5=2a4或a5 + a10=2a7,并且k可以为小于n的任何正整数)
②若m+n=p+q
则am+an=ap+aq
③(am-an)/(m-n)=d
④若{an}和{bn}均为等差数列,那么{a(bn)}和{b(an)}也为等差数列
是否为等差数列判定方法
①a(n+1)-an=常数
②a(n-1)+a(n+1)=2an
等差数列前n项和其他公式
S(9n)-S(8n)=S(8n)-S(7n)=S(7n)-S(6n)=...=n^2d
等比数列通项公式
an=a1×q^(n-1)
等比数列前n项和公式
an=a1[1-q^(n-1)]/(1-q) (当q≠1时)
an=n×a1 (当q =1时)
等比数列其他公式定理
①a(n-k)×a(n+k)=an^2
②若m×n=p×q
则am×an=ap×aq
③(m-n)√(am-an)=q (注意这里的m-n是指开m-n次方)
是否为等比数列判定方法
①a(n+1)/an=常数
②a(n-1)×a(n+1)=an^2
一级建造师 二级建造师 消防工程师 消防设施操作员 BIM 造价工程师 环评师 监理工程师 咨询工程师 安全工程师 建筑九大员 公路水运检测 通信工程 智慧消防工程师 装配工程师 一级注册建筑师 二级注册建筑师 注册电气工程师 智慧建造工程师 房地产估价师 应急救援员 EPC工程总承包 PLC智能制造 碳排放管理师 雅思 托福 GRE 托业 SAT GMAT A-Level ACT AP课程 OSSD 多邻国英语 考研英语 英语四六级 商务英语 青少儿英语 IB英语 剑桥英语 职场英语 提升英语 AEAS 英语口语 出国英语 初高中英语 学生英语 成人英语 公共英语 词库 经济师 初级会计师 中级会计师 注册会计师 基金从业 证券从业 薪税师 银行从业 CMA ACCA 会计实训 税务师 CFA 企业合规师 审计师 FRM 高级会计师 会计就业 期货从业 CQF 真账实操技能 葡萄牙语 日语 德语 法语 韩语 西班牙 意大利 高考小语种 粤语 泰语 俄语 阿拉伯语 优路 火星时代 环球雅思 樱花日语 启德雅思 新通 达内 高顿 童程童美 乐博乐博 小码王 秦汉胡同 新航道 秦学教育 学大教育 东方瑞通